OPTIMAL SELECTION OF GLOPAL POSIT!ON!NG SYSTEM SET 70O 172
MINIMIZE EMITTER LO.. CU> AIR FORCE INST OF TECH
1GHT-PATTERSON AFB OH SCHOOL OF ENGI.. S G PETERS

DEC 87 AFIT/ENG/GE/87D-51 F/G 1777

NL.




R ey
Y0 kTR ) |

FEFEER

EEEEE

ETF
3
ke

.1 :
H I""% Jllll % ]
IIIII' 25 Jlis e |

3 {..

P ECII Sy

- i
4
A
\
T
)
L 4 - v L 4 L 4 [ 4 L4 | 4 D
v"\r"-. AT N i "-‘ w’::\-a& (N \*":x. -.‘\*-'-.
*:&J;’S" AR * e

- ‘\1 > ' "- o \ - \. -. -.
l‘f ' 0l‘|l‘| I.‘l“o' ¥y o 11 e, N O AL



AD~-A189 559

+
|
|

" OPTIMAL SELECTION OF GLOBAL
d POSITIONING SYSTEM SET TO MINIMIZE
" EMITTER LOCATION ERRORS

_ Stephen G. Peters
-~ Captain, USAF

AFIT/ENG/GE/87D=51

A

o

DTIC.

. @ =LECTE
. MAR 031988

DEPARTMENT OF THE AIR FORCE L H
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

P oAl 21 X -
- 2

!

A
-
v

N ASTIRL . BN bl
[}

~7

.

[_ Wright-Patterson Air Force Base, Ohio
% ’ DISTRIBUTION STA A

Approved for public release; 88 3 01 143

o Distribution Unlimited l

-~

S ”J'..'( A O g '..' '.--‘ Ot "-.-" R, ."-.'. AN ‘..-. Oy ". A, W s .f‘i‘ -f"‘ >, \"‘..\-'\'\\. y
X Al g R . » g B a2 Ead 3 ) .

-----



T T T N Y O A N A R A R U L Y S R A O R T T VO R O ) TGN O TERTRKTYR

AFIT/GE/ENG/87D-51 :

P

PR R B Al RS

&

v, v 0 L

OPTIMAL SELECTION OF GLOBAL

L .
2

POSITIONING SYSTEM SET TO MINIMIZE

- -

EMITTER LOCATION ERRORS

bt 8 oF o 4
e " .

Stephen G. Peters
Captain, USAF

AFIT/ENG/GE/87D-51

R L AR~
.% 5 5y 8

B

LSS
S N

<

DTIC

ELECTE
* MAR 031988
—DISTAGGTION STATEMENT & x

Approved for public reiease; H A
Distribution Unlinited

P SXd NG W 52 O &4 B

L7

RO AYY DN AR o S S N e L A e AT e s A v vt



CR X

f':*!'.’?‘.’?‘ll.‘a'?‘wk -'\).‘ok' W, s‘:‘o'- W ‘:‘:‘

AFIT/GE/ENG/87D-51

OPTIMAL SELECTION OF GLOBAL POSITIONING SYSTEM SET

TO MINIMIZE EMITTER LOCATION ERRORS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

Stephen G. Peters, B.S.

Captain, USAF

December 1987

Approved for public release; distribution unlimited

el enly al, - SONRAAY

-------

. T P % Y ‘h'.'\‘ .l IS . - LI VAR LY - - -
o g L LA SR

‘4
'-{'-"

7,
e

' -
447

PRI
B IR L
valg Sro s d

ol

AL %Yy

P

o



ace

[ o
5

I would like to thank my thesis advisor, Lt Col Zdzislaw

',n.*".'v

. Lewantowicz, for the guidance he gave me and the faith he had in

B ol

me during this research effort. I would also especially like to
thank Dr. Peter Maybeck and Col Daniel Biezad for timely inputs

. to keep me on the right track.

LR
;?;Fﬁ'{fﬁa

A special thanks is due to Capt Rodney Bain, who provided

gt

‘.1’1

X support when it was most needed. He is not only a good friend,

«
L]
[#

o

T

but a true brother in Christ as well.

Iy

k4
«

?;,

Most of all, I would like to thank my wife, Wendy, for the

loving support and assistance she gave me during those months

“' Jﬁfx;

v

. when the end seemed so far away. She handled the stress and put

NIV
LYY

: up with me through the worst times; without her this thesis

would have been impossible to accomplish.

T
B S i

2

Stephen G. Peters

.
‘e

DR XX

Accession PFor
" NT1S GFRA&l
orip DTIC TAB

Unaunoune. 4
M 1. @
I M Juutificnt: o

? |

By B} L o
Distrtbar oy

i
[
I . : N
o AVAt T D : )
- : \
¥ e o I !

. ii l[)lxt e

ST

O




"'.
N
OM
X
U
Table of Contents &
Page o
‘ .. 41
Preface . . . . . . . . . . . . . O . - . . . . . . . . . 11 Lt
Lht
\l
i List of Figures . . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o o s o o o v \
b 4
List 0of Tables . . ¢ ¢ & o o o o o o o o o o o o o o o vi '
t:" AbStraCt . . . . . . . . . . . . . . . . . . . . . . . . Vii ""
N
’ I. Introduction . . ¢ ¢ & ¢ ¢ ¢ 4 4 e s e e e e e e 1 )
2 .
! Background . . . « « ¢ ¢ ¢ o o & o o o o s o 1 !
Problem and Scope . .« « « ¢ « ¢ o o o o s o 2 y
1, Summary of Current Knowledge . . . . . . . . . 3 ’
’ Assumptions . . L . . . . . L] . . 3 . . 3 . . 4 }
General ApPProach . . « ¢« « « o ¢ o o o o o o 5 o~
OverView . . . . - . . . . . . . . . . - . . . 8 L
.;I ':'c‘
II. Error Dynamics and Measurement Model . . . . . . . 10 s
“ IntrOduction . . . . . [} . . . . . . . . . . 10 :’ .
A\ Observer Navigation System e s e e e e e s e s 12 -
The Emitter Measurement System . . « o e . 16 nq
N Observer Navigation and Emitter Measurement . 17 -
I1I. Estimator and Cost Function Development . . . . . . 35 ::'
o
i‘ IntrOduct ion . . . . . . . . . . . . . . . . 3 5 ::
0 Estimator Development . . . . ¢« . . . . ¢« . . 36 -
Cost Function Formulation . . . . . . . . . . 39 LS
Cost Gradient Formulation . . . . . . . . . . 42 ~
R Minimum Cost Search Technique . . . . . . . . 46 o]
N
N
’ IV. Results L] L] L] L] L] L] . . L] L] L] L] L] . . . . . . L) L] . 53 ‘:
iy ':\
. Introduction . . . e e e e e e e 53 o~
Four Satellite Optimization C e e e e e e e 54 =z
K] Three Satellite Optimization . . . . . . . . . 65 N
i3 Two Satellite Optimization . . . . . . . . . . 74 3
Satellite Selection Algorithm . . . . . . . . 79 o
0 7y
N V. Conclusions and Recommendations . . . . . . . . . . 82 N
. Conclusions . . . . ¢ ¢ v ¢ ¢ e e e 0 e e o0 82 "
s Recommendations . . . . . . . « « . ¢ o ¢ . . 83 o
g W
@
' s s o~
v iii -
-(‘
‘I‘
L] ¢
)
P
..... R T A O A AR It




N r

,‘

"_

by,

E Page >

N

! Bibliography . . . . . . . . . . . . . . . . . . . . . . 85 »

Appendix A: Cost Gradient Function Derivation . . . . . A.l E

;" Vita . L4 . L] L] L L] L] . * L] L d L] L L Ll L] . L] . L] . L] L] . . v.l l‘
9:* t

Ny

PR

T

!
I
- ’
; 2
L] .I
>
" -
o,

¥t OB O WK
.ﬁ‘i *n"(.(.'. T\ f‘{’,”{‘f’? \ e

4

o
L]
L]
)
)




E List of Figqures :
v,
l Figure Page '
-~
2.1. Two Dimensional Navigation Measurement Geometry . . 23 >,
E 2.2. Two Dimensional Emitter Measurement Geometry . . . 32 ?.’;

3.1. Geometry for LOS Elevation Constraint . . . . . . . 45
o)
ﬁ 3.2. Steepest Descent Search Technique . . . . . . . . . 49 x
& 3.3. Projection of Gradient onto Tangent . . . . . . . . 51 :
~

4.1. Four Satellite Initial Configuration . . . . . . . 55

E 4.2. CEP Behavior During Filter Iterations . . . . . . . 58
‘ I
4.3. CEP Behavior at First Local Minimum . . . . . . . 59 K
&

:;_ 4.4. CEP Transient Behavior . . . . . + « « « « « « « . 60
~ 4.5. Four Satellite Final configuration . . . . . . . . 62 p!
A 2
N 4.6. Four Satellite Trajectory . . . . . « ¢ ¢« + &« « « 64 b
e
‘ 4.7. Pseudo Three Satellite Final Geometry . . . . . . . 67 ;
4.8. Pseudo Three Satellite Trajectory . . . . . . . . . 69 ':
-
l" "
¥ 4.9. Three Satellite Final Geometry . . . . « . ¢« + .« . 71 "
4.10. Three Satellite Trajectory . . . . . . . . . . . 73 E
3. 4.11. Two Satellite Final Geometry . . . . . . . . . . . 76 5::'
.3 4.12 Two Satellite Trajectory . . . ¢ ¢ ¢ ¢ « o « « o« & 78 g
L | C:
[ J
n
E n
L
(
(Y
R @
I N
™
% R
' ®
' X
% ¥
3 v X
~
-
' .
S -

5 AT P AR NN R P TR M AT R A a e P p  p T A L P, e At Wy - P I T I U T R e T SR I IR
DR Cae O, _.I. < AT e X : oo )_If\d‘ AT IEL AN SCNA N SO AN f_...r,/-_.r o .r...r_.-.- .r.-

y

-

NN,

A



i L) \J \J U L) U \] t (] * L

C L L

List of Tables

20 s e
-': LY 5

g
B St S o N

Four Satellite Initial Positions . . . . . . . .

Four Satellite Initial Error Ellipse Parameters

D " “ o

Four Satellite Final Positions . . . . . . . .
Four Satellite Final Error Ellipse Parameters
Pseudo Three Satellite Final Positions . . . .
Pseudo Three Satellite Error Ellipse Parameters
Three Satellite Final Positions . . . . . . .
Three Satellite Error Ellipse Parameters .

Two Satellite Final Positions . . . . . .

Two Satellite Error Ellipse Parameters .

<

v
>

i Tu Pu e | AP
» o~ 45y
I.’l{ﬁ' . "t‘ Fals d'.n’f

4

"")

h ]
Y %

Z

2
3

>4

q; (: A.- l: l_‘ -
g A

&'
e

PRPTYR . et wn . . e it e AL I R W ALY : AT N NN N W ~ o LN )
‘!‘.‘?...‘ ||..’.l',‘! p A '-ﬂ, N Y \\.}, NN \\ . .J.. AT J,‘. N . ‘,,'b. \-F} NP e N



i
¥
&
: AFIT/GE/ENG/87D-51 5 ‘:
]
"
kbstract §?f
: 5{;
l; d 'y
g
A2
The use of the Global Positioning System (GPS) as a
v .
[) w NG
! navigation aid for aircraft attempting to locate a ground-based g‘
N
5 electromagnetic energy emitter is studied. 1In particular, the tﬁ
X N's
B satellite geometry which yields minimum errors in the emitter
s
¥ location estimation for four different satellite availability i:
cases is explored. This geometry, in general, is not the same EEI
. MY
= as that which yields minimum aircraft navigation errors. o
0 Satellite selection criteria are identified and serve as a basis M
pl

for selection algorithm development.

KA

i The research shows that emitter location errors can be

significantly reduced by selecting satellites based on the

- a s

‘ N
', criteria presented in this study. Three satellite performance o
is found to be nearly as good as that obtained using four ®
» r d
satellites and, for the two satellite case, emitter location is ;\‘
'.\
o still better for some period of time than that obtained using ﬂi
13 ‘.\
four satellites selected to minimize Geometric Dilution of :.
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OPTIMAL SELECTION OF GLOBAL POSITIONING SYSTEM SET
TO MINIMIZE EMITTER LOCATION ERRORS

I. INTRODUCTION

1.1 BACKGROUND

The use of aircraft equipped with electro-magnetic energy
receivers to determine the location of an emitter has many
military, as well as civilian, applications. Missions such as
strategic and tactical reconnaissance, as well as airborne
search and rescue, require accurate determination of an emitter
location. The difficulty faced by these airborne collectors is
that in order to determine an emitter location precisely, they
must establish their own position very accurately. This
difficulty is compounded by the fact that, for many
applications, a global positioning capability is required.
Although many navigation systems such as LORAN and OMEGA provide
substantial capability, the Global Positioning System (GPS)
provides continuous global coverage with much greater accuracy.
However, in order to obtain highly accurate observer position
inrformation, it is necessary that the airborne platform select
the appropriate satellites from the available constellation of
satellites which will yield optimum emitter location solution
geometry. Ideally, the satellite selection criterion should

optimize the accuracy of the emitter location estimation.
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1.2 PROBLEM AND SCOPE

The problem is to determine the positions of three airborne
collectors and four GPS satellites such that errors in the
estimate of emitter location will be minimized. 1In this case,
optimum position is defined as that position which results in a
minimum value for the emitter location estimate mean squared
miss distance (MSMD), or alternatively, the circular error
probable (CEP). The MSMD is a scalar cost function of the
emitter location errors, which in turn is a function of the
satellite position geometry expressed in the Kalman filter
measurement equation. The local minimum CEP cost value is

obtained using a steepest descent gradient search algorithm.

This study examines the impact of both satellite positions
and collector positions on emitter location errors. It also
investigates emitter location accuracy after degrading to three
and two satellite operation. Additionally, an algorithm is
developed which selects the optimum satellite configuration for
minimum emitter location errors. Note that the goal is not to
develop the "best possible" emitter location system, but to
determine the optimal satellite geometry which minimizes emitter

location error. Therefore, a highly elaborate truth model is

not required.
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1.3 SUMMARY OF CURRENT KNOWLEDGE

The NAVSTAR Global Positioning System is a space-based
radio-positioning navigation system which provides highly
accurate three-dimensional position and velocity information on
a global basis to a very large number of users (9:146). In
general, at least four satellites are required to solve the four
time-difference-of-arrival equations for the three dimensional
position and the user receiver clock error (1:85). Since the
GPS generally allows the user to view six or more satellites at
any given time, it is necessary to select the combination of
satellites that will give the most accurate position information
(3:8). The effect that satellite geometry has on ranging
accuracy can be expressed in terms of Geometric Dilution of
Precision (GDOP) (3:8). An algorithm which maximizes navigation
accuracy selects the combination of four satellites that yields
the smallest value of GDOP (3:8). It should be noted that
although the minimum GDOP criteria results in minimum user
position errors, it "... does not generally result in minimum
emitter location errors" (4:64). This is due to two factors.
One is that vertical collector position errors contribute
negligibly to emitter location errors since the emitter is
assumed to be on the surface of the earth. The second is that
the collector position errors are mapped through the nonlinear
hyperbolic functions to the emitter location errors (10). The

use of joint estimation of emitter position with observer
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position produces emitter location errors which are

'g significantly smaller than estimates based on satellite
selection using minimum GDOP criteria (4:93). It is alsoc noted
@ that the joint estimator significantly outperforms the two stage
‘ estimation process where the observer navigation problem is

iE solved first, followed by solution for the emitter position.

T The price which is paid for the gains obtained ky using a joint
é estimator is an increase in computational loading. During his
Es research at the Massachusetts Institute of Technology,

- Lewantowicz (4) investigated system performance when using only
é’; three satellites and found that emitter location accuracy was
very nearly the same as that obtained using four satellites.

Additionally, he demonstrated that degraded operation using only

ﬁ two satellites and a precise clock yields an acceptably accurate

emitter location solution.

oyt
‘l ( l.

Y A number of assumptions necessary to define and adequately

AP

¢ 4
[ 8

limit the problem are presented in the next section.

K|
TaA
'.c l'l‘ .
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3 1.4 ASSUMPTIONS

=%
oy

. The following assumptions are made at the outset of the
problem:

.

ﬁ 1. There are three airborne collectors operating

simultaneously.

2. Each collector platform has a high grade Inertial Navigation

System (INS) with barometric altimeter data available. The

= &%

------------------------
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‘ external altitude measurement is available to stabilize the i::
inherently unstable vertical channel of the INS.

3. Each collector has measurements available from four GPS :;*
satellites. Further, each observer uses the same four E:
satellites for updates. This is a reasonable assumption since

.3 the three platforms are operating in the same geographic area :E-\,
. and will "see" essentially the same constellation of available _}:E
: satellites. >
\ 4. The GPS satellites selected should lie at or above five 5 .
| degrees elevation from the local horizon measured from the E“"
: center of the collector geometry. Lower elevation angles ':.
, increase ranging errors due to propagation effects. ‘;
5. The collectors use a passive emitter locating method known E?_‘
as the hyperbolic location system (10). f\
6. A constrained emitter-collector geometry is assumed. This 1

. assumption narrows the problem to that where the approximate :;':
emitter location in general is initially known or crudely :
measured. "__ )

:
1.5 GENERAL APPROACH R

-

Parameter optimization is used to solve a set of emitter :ﬁa

: location problems assuming various satellite availability -
, constraints as outlined by the following. E:-:
- 3
&
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OPTIMUM SATELLITE POSITION

XL

During this portion of the study the four GPS satellite

it o8
5
4

positions are selected from among an infinite set on the orbital

:‘_!

sphere using the cost gradient search. The collectors executed

£ 1.0,

».

their predetermined orbits. The cost is formulated as a

.
:{w'

function of GPS satellite positions and is computed using the

Kalman filter covariance matrix function. The filter covariance

= _m_=
i

matrix is a function of the measurement observation matrix,

which in turn depends on the satellite positions. Thus, for a

y i
l‘.? :

steady-state Kalman filter solution, the cost function depends
only on the satellite positions. Therefore, the gradient vector
of this scalar cost function indicates the magnitude and

"direction of movement" for each satellite at update time. The

p A A . |
| 5}".:._‘.«'._" :

navigation Kalman filter is allowed to reach steady state from

.

-
&)

the same initial conditions at each cost computation point

-
! 4

A

4_8

4

A1

. PPy

before satellite "movements" are computed. It is hypothesized

F TN

that information retained by iterating the filter only one time

'I
o

between satellite movements without reinitializing the Kalman

a
- - -

i

filter may have produced overly-optimistic CEPs as obtained by

b
rd

LY

Lewantowicz in his research (4). His motivation for iterating

only one time is the computational savings in the minimum cost

5
I'} i.

-

search.

THREE SATELLITE PERFORMANCE

VP

A AR AR

Of the four satellites, three are moved to optimum

positions for this portion of the study, while the fourth
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satellite remains fixed overhead to simulate the availability of
a precise clock onboard each collector platform. A second
analysis is accomplished using information from only three
satellites to determine the validity of the hypothesis that the
overhead satellite can be used to simulate a precise clock in a
three satellite problem. A comparison is made between the

results obtained using these two approaches.

TWO SATELLITE PERFORMANCE

This portion of the study is very similar to the three
satellite case. Given Kalman filter estimates of user clock

bias and user clock drift obtained using measurements from four

satellites, the number of visible satellites is reduced to only

two and the satellite positions are again optimized.
Comparisons are made with previous simulations to determine the

feasibility of two satellite operation.

The results of the optimum satellite position analysis are
then used to construct a selection algorithm. The behavior of
the scalar cost as a function of satellite geometries are
studied to determine the characteristics of an "optimum

satellite geometry" and selection criteria are established.
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1.6 HESIS OVERVIEW

The following chapters describe the problem structure, the

mechanics used in solving the problem, and the results obtained.

Chapter 2 develops the error dynamics and measurement
models used by the emitter locating system. The observer
navigation error state vector is augmented with the error states
associated with the emitter measurement process to obtain the
system error state vector. Measurement models are formulated
for observer navigation measurements, as well as emitter

measurements, and are linearized for use in linear estimation.

Chapter 3 builds the structure of the discrete-time
extended Kalman filter which is used as the estimator for this
study. The cost function, based upon emitter location mean
squared miss distance, is developed as a function of the GPS
satellite positions. The emitter location CEP is also computed.
Finally, the minimum cost search technique used in this study,

the steepest descent weighted gradient algorithm, is described.

Chapter 4 presents the results obtained when the GPS
satellites are moved to optimum positions, minimizing the error
in the emitter location estimate. The three satellite
performance is shown to be essentially the same as that obtained

using four satellites. Further, the use of only two satellites
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and filter estimates for user clock parameters yields reasonable
emitter location performance. Satellite selection criteria are
established based on the results obtained in the four satellite

optimization cases.

Chapter 5 presents conclusions and recommendations arising

from this study.
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II. ERROR DYNAMICS AND MEASUREMENT MODELS

2.1 INTRODUCTION

In general, locating an electromagnetic emitter requires a
method for determining the observer's position, as well as a
method for distinguishing signals intercepted from an emitter.
For the simplified case of a stationary observer, the observer
position can be very accurately determined by means of a precise
survey. However, for such applications as airborne search and
rescue operations, the observers must move in order to provide
the required coverage of the vast areas involved. The problem
of determining the position of these moving observers requires a
navigation system capable of providing highly accurate position

information on a global basis.

In this study, the system used by each observer to provide
this high quality position data is a high grade inertial
navigation system (INS) which is updated by measurements from
four GPS space vehicles (SV) and stabilized by measurements
from a barometric altimeter. As pointed out in Section 1.4, the
GPS satellites selected lie at or above five degrees elevation
from the local horizon and each observer uses the same four
satellites for updates. Note that the following models and
derivations correspond to those used and developed by

Lewantowicz in his thesis (4).
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ﬁ The method used to analyze the performance of the emitter ;.'r
o,

! location system is a linearized error covariance analysis of the Z
‘ estimated errors. To perform this analysis, the state vector :}
]

§ representing the actual system state is given by x,(t) and the .
estimate of the state vector at the same time t is given by S

N N

g x(t). The error state vector, x(t), can then be defined as I\
r

4

r

3 ; :

x(t) = x,(t) - x(t) (2-1)

.8

¥ 3
) which satisfies in general the vector differential equation n
R 2
X(t) = £(x,t) + G u(t) (2-2) ‘s

’ 4
3 xX(0) = xq -

o
8

where f is a time-varying vector valued function of x(t)

’, describing the error state dynamics. The matrix G is the time

b £ AR

invariant noise distribution matrix, and w is an independent

- ]
.
S

Zero-mean white Gaussian noise process with covariance kernel

N A

s

E(w(t)wl(t + 7)) = Q(t) §(7) (2-3)

where E is the expectation operator, Q is a diagonal matrix, and §

L AR

is the Dirac delta function.

-2 =

The measurement process for the estimator is well modelled

by

e 24

.???772(
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z(t) = h(x,t) + ¥(t) (2-4) N
A
where h is a time-varying vector valued function of the error ?.
)
Il.-
state x. The measurement noise v(t) is an independent zero-mean )
[
b
white Gaussian noise process with covariance kernel .
[ :’:._
) _.-.\'
T 3
Efv(t)vi(t + 7)) =R §6( 1) (2-5) -
Cal
A
. e
where R is a diagonal matrix. -i
e
."-
.(‘-
' v
Given this system model, an extended Kalman filter is used
g
’ to estimate navigation errors. This filter is discussed in Q}'
Ll u\.:
Section 3.2. System dynamics and measurement models for Ny
I
=
navigation and emitter location are discussed in Sections 2.2 ¢
e
through 2.4. -
-
: :‘:\
N
A
2.2 OBSERVER NAVIGATION SYSTEM ®
[} :\:( :
' R
. A number of systems are available which can provide t:ﬁ
()
.-\ \
navigation data to airborne observers. These include time- ';
N
f difference-of-arrival (TDOA) type systems such as LORAN and ng
ol
-
OMEGA and range measurement type systems using Distance g%
[
Measuring Equipment (DME) measurements to surveyed stations on %
the ground. These systems are, in general, limited by $§
\~.‘\
combinations of accuracy, availability or areas of coverage. A 154
\*::
. performance improvement over these systems is provided by GPS. _\:.
-'_:I
~79
12 \_
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. The NAVSTAR GPS, when fully operational, will consist of a

v v

!’
- -

constellation of 18 5Vs, 3 in each of 6 orbital planes (9:146).

The GPS has potential for providing highly accurate three-

o
7

¥
N

0 dimensional position and velocity information along with

¥ f ] :
Coordinated Universal Time (UTC) to a very large number of -
N suitably equipped users. The orientation of the satellite ?1
orbits generally allows the observer to view six or more z:
k satellites at any given time, thus providing adequate navigation X
: information on a global basis (3:18). The GPS SV transmits an ﬂ:
encoded navigation message from which the receiver can determine -
o the pseudo-range to the SV with a very high degree of accuracy. N
. The locus of points for each pseudo-range measurement describes ?E
‘: a sphere whose center is at the SV. The point where three EZ
: spheres intersect provides the observer with position Q?
information in three dimensions. Since the observer generally gj
; uses a fairly inaccurate crystal clock, a fourth pseudo-range i?
measurement is used to determine the user clock bias. Most of };
) the error sources associated with the GPS can be effectively ;;
o minimized by error modelling and the use of Kalman filtering to ;E
: estimate these errors. As a result, the GPS is capable of 'b;
$ providing much more accurate position information than most E::
other navigation systems. Because of this high degree of ':'

-

o
By P w4

accuracy and the global positioning capability of the GPS, a

high-grade INS is combined with the GPS to form the navigator N
which is used for the emitter locating system in this study. ;ﬁv
. poR:
®
=
e
-
13 ':'_.-
LY R
9
o
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2.2.1 THE INERTIAL NAVIGATION SYSTEM

The INS system errors are modelled using 16 states, forming

the state vectors x,, X,, and x;. Note that there are three INS

error state vectors since each of the three airborne observers
has its own INS. Each of these state vectors is defined as
follows (4):

East position error

North position error
Vertical position error
East velocity error

North velocity error
Vertical velocity error
Roll error (east axis)
Roll error (north axis)
Roll error (vertical axis)
Barometric altimeter error
Barometric sea level pressure variation
East accelerometer bias
North accelerometer bias
East gyro bias

North gyro bias

Vertical gyro bias

- -

State vectors x, and x5 are defined in the same manner. It

should be noted that the roll, pitch and yaw data in each body
frame are transformed to the East-North-Vertical (ENV)

navigation frame for each observer (4:17).

2.2.2 THE GLOBAL POSITIONING SYSTEM

The measurements available to update the inertial
navigation system are pseudo-range measurements to the GPS SV

represented by

LA

y el o7 o "- P R A ALY



Rij = cC tij (2-7)
where Rij is the pseudo-range from the i-th observer to the j-th
SV, c is the speed of light, and tij is the travel time of the
signal. Because there are errors inherent in the system, this
pseudo-range measurement does not only represent the actual line
of sight (LOS) range to the SV, but includes several errors.

The error sources modelled for this study are uncalibrated
propagation errors in each GPS receiver channel, uncalibrated
offset and drift errors in each observer clock, code loop

interchannel biases, and LOS errors. These errors form the

state vectors x, through Xg described by

X 12 states for receiver propagation errors
X 3 states for clock offsets

Xg 3 states for clock drifts
X
X

12 states for code loop interchannel bias
8 4 states for LOS biases (1 per SV)

The augmented error state vector is formed by combining all

the error states as

The resulting error state column vector is of dimension 82.

Although models of higher dimensionality exist, the model
described is adequate for this study. Such assumptions as
straight, level, unaccelerated flight at high altitude reduce
the effect of other error sources allowing lower state vector

dimensionality.
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2.3 THE EMITTER MEASUREMENT SYSTEM

States which describe the errors associated with the
emitter measurement process are added to the model. These
states are the emitter position, emitter-signal receiver time
delay calibration error for each observer, and the error in
modelling tropospheric delay along the line of sight from each
observer to the emitter. These errors form the state vectors Xg
through x,, and are described as

Xg 3 states for emitter position errors
X1p 3 states for receiver calibration errors
X;; 3 states for tropospheric delay errors

The total augmented error state vector, x(t) is formed by

augmenting state vectors xo through x to Egn. (2-8)
9 11

This final error state vector is of dimension 91.

Note that this formulation of the error state vector allows
joint estimation of emitter position with observer position so
that all available information is processed jointly at each
computation step. The result of this is that the solution is
optimal in the minimum mean-squared error (MMSE) sense (6).

Each measurement updates both the navigation position and the
emitter location. As a result, the emitter measurement can be

used to reduce navigation errors. The consequence of choosing
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the joint estimation scheme over a two-stage estimator (4) is an
increase in required computations. For this study, the
increased performance of the joint estimator justified the

increased computational burden.

With the models for the error state dynamics and noise
inputs now developed, the next step is to model the measurements

for the navigation update and the emitter update.
2.4 OBSERVER NAVIGATION AND EMITTER MEASUREMENTS

p A X _TARE_IT AT RS AL T A Ly x DKy R T

2.4.1 OBSERVER NAVIGATION MEASUREMENTS

The actual navigation measurement is the pseudo-range from
the observer to the GPS SV defined as the transit time of the
signal scaled by the speed of light. Each GPS signal carries an
encoded navigation message containing SV ephemeris data which
allows the position of the SV to be determined very accurately.
With this information, the observer can solve four equations in
four unknowns. These unknowns are the three position components

of the navigation error state vector and the user clock bias

error.
In addition to the inherent system errors in the GPS, other
error sources affect the accuracy of the pseudo-range

measurement. The significant errors are modelled and discussed
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in this section. The errors induced by atmospheric delay result
primarily from ionospheric refraction. The change in apparent
path length brought about by ionospheric refraction can be
substantially reduced by employing dual frequency compensation
since each SV transmits two frequencies, f, and f,. The two
frequency compensation is based on the fact that the ionospheric
delay &7 1is frequency dependent

6T = (2-10)

K
£2

where

environmental constant
carrier frequency

i B
nn

Let At, denote transit time measurement at frequency f; and write

it as (4:23)

Aty =At + 67 + (2-11)

where
At = the transit time of the signal (uncorrupted)
67, = ionospheric delay at frequency f
ry = time measurement error due to other sources

Forming the ratio

2 [.2
8r,  k/fy |£

BT = — = (2-12)
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; yields R

§ry = =, 81y (2-13) IN

Rewriting Egn. (2-11) for frequency f,

r Yt g ]
SNV
PSS -"’ g

y 522 =At + 671, + r, (2-14)

F g
%

Next, define the measurement difference between frequency f; and .

£, 5At as .
_ 2
) At = At; - At, (2-15) S

Solving for 5&1 by substituting Eqn. (2-11) and (2-14) into
(2-15) yields ﬁ?

o,

8&1 = At + 871 +r; - At - 672 - r,
(2-16)

[}
4 .
.'/ala

a4, 4

811 - 872 +r) - x,

A Ay
4

\ -

," l'
A@ »bih

Substituting (2-13) for &7, produces

%
A

BAE = By - = 87y + 1) - T,

= (1 -az) 8T1 + rl - r2 (2‘17)
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where

Writing the compensated time delay measurement at frequency £,

~e o~ 5At
At = At} - —— (2-18)
1l - a2
Substituting (2-17) and (2-11) into (2-18) gives
~ o 5 5At
At = At + Tl+r1"l 3
-Qa
ry - r
= At + 67y + ry - 614 - 1 2
l-cy2
ry (1 -q2) - +
1 @®) - r tr;
= At +
l-az
2
= At R (2-19)
= - 5 -
1-021 l-ar2

Note that the ionospheric delay dependence has vanished, but r,

and r, are still undefined.
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Let

where ¥; and Y, are the GPS code loop measurement bias errors in
the two receivers. These errors are modelled as elements of
state vector x, while Atc, the user clock bias error, is
modelled by X5, as described in Section 2.2.2. The terms v; and

vV, represent zero mean, white Gaussian measurement noise.

Substituting Egn (2-20) and (2-21) into (2-19) to obtain

1
(Y, + Vq) + —————— (Y, + V,) (2-22)
1-02 1 Y a-g2y 27

At® = At + Bt -
where

Ste = (Atye - a2Aty.) / (1-a?)
Since the compensated time delay measurement has been
determined, the ionospheric error compensated pseudo-range

measurement is obtained simply by multiplying by the speed of

light, ¢

cAt® = cAt + cdt, -
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R* = R + 8R, - (Y + vqy) + (Y5 + v,) (2-23)

! C l l 2 2 -’\
1 -a (1 =a2) Bl
ooy

1 ¥
With this range measurement model, the next step generates fal

. the observation model for the range measurement between the i-th 3;
o
n observer and the j-th GPS SV. Eir
, o
Y Let Pg(j) denote the position vector of the j-th GPS SV N
: e
expressed in the earth-centered earth-fixed (ECEF) coordinate o
oY

3 frame. The line-of-sight (LOS) vector from the i-th observer to <
s

\ the j-th SV is then the vector Ppg(i,j). This geometry is shown 3$
- for the two-dimensional case in Figure 2.1. From this figure it 3;
T is seen that -
i

}

. - . ¥
Pas(i,3) = Bg(3) - Pp(i) (2-24) 2
N
o
¢ . . . . .. '..
4] The range R(i,j) is a nonlinear function of Pag(i,3). If the -
ﬁ computed 1LOS vector is defined as Pps, then the range is given :5'
¢ e
by °

R(i,3) = |Pag(i,d) | ?:'-:':

. . A
_ = |Pg(j) - Pp(i)| S
A T o N,
= [Ppg(i,3) Ppg(i,j)11/2 (2-25) b

o

W ot

A where |. | is the magnitude operator. A
' o
o X
a:'\

‘P
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Since a linearized measurement model is required for

N
estimation, R(i,j) and R (i,j) are expanded in Taylor series
about the actual positions to first order yielding (4:27)
A oR 3R
R=R+ — §Pg + — 8P, (2-26)
dPg LYN
Taking the partial derivatives produces
A T ..
BR(IIJ) EAS(lIJ) T ..
- = — = Upg(1,3) (2-27)
OP,(J) R(i,3)
and
dR(1,3) PAs(l 3) o
——— = - —— = = Up(i,3) (2-28)
3P, (3) R(i,3)

It should be noted that the first partial derivative of the

range is the unit line of sight vector. Thus, (2-26) becomes

R(1,3) = R(i,3) + Upc(i,9) (8Pg(3) = 8PA(i)]  (2-29)

The linearized measurement, z(i,j), can be formed using

(2-23) and (2-29) as

~ A
R®(i,3j) - R(i,3)

z(1,3)

= - Upg(i,3) [8Pg(3) - 8Pp(i)] + SRL(i) - — -

c
(Y1(i,3) + vy(i,3)) + > (Y(i,3) + vy(i,g))]
l ~w

(2-30)
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The errors in observer position, 8£A(i), are the first three
elements of the inertial navigation system error state model
vectors Xy, X and X4 as given by Egn (2-6) for i=1, 2, 3
respectively. The GPS position errors, §P;(j), are modelled as
unknown biases along each j-th line of sight and are represented
by the error state vector xg described in Section 2.2.2. Thus,

(2-30) can be written

2
ca
z(i,3) = Qgé(i.j)BPA(i) + OR, (1) - I-_—E‘ [y (i,3) + vy(i,3)]
s 4
C
+ ;‘:Z?? [Yo(1,3) + va(i,3)] + bg(3) (2-31)

Note that the additional term bp(j) is added to account for

unmodelled LOS biases.

In order to reduce the dimension of the error state vector,
the code loop errors, Y, and Y5, and the measurement noise

terms, v; and v,, are combined respectively to obtain two random

variables Y and v. By letting

2

co C
Y(i,3) = = ——— Yy(i,3) + —— Y, (4,73)
1 -(12 1 ’ 1l - az '
CCY2 C
v(i,j) = = ———= v (i,)) + ——= v, (i,])
1 -2 1 =g 2
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Egn (2-31) is rewritten as

2(1,3) = Upg(i,3)8P5(i) + BR.(1) + ¥(i,3) + v(i,3) + b(3)

(2-32)

The code loop tracking errors are modelled as first-order

Markov processes such that the combined code loop dynamics are

given by

AT I T

).Iz—;)"f'w (2-33)

YNy LY
S e
LhhG S

<’

[
S,*,
A, 4

T o= — (2-34)

Sl

and B, is the noise equivalent bandwidth of the code loop
tracking filter. The user clock offset error, 5Rc' is modelled

as a constant drift

5? = — &£, (2-35)

where 8f_ is the user clock frequency error and §f./f_ is a

random constant drift bias. Thus, NX

) ES
5f o

c o

— =0 (2-36) ey

2
u®

&
0
. ‘/'-'.- . '...'.-
, U Y
h] RAAAANDS

26

- T I P e el R R R R R IR ARG
N N R R S G LAt WY VCLALEWN LY oy

o~ e

M A O LR G e >



-

A
D RN

“

These two states model the clock error. The equivalent pseudo-

range bias term, bg, is modelled as a random constant such that

With the navigation measurement model now complete, the

emitter measurement model is developed next.

2.4.2. EMITTER MEASUREMENTS

Since the transmission time of a received emitter signal is
not known a priori, the transit time cannot be used to
determine the range to the emitter. The only information
available to each airborne observer is the time of arrival (TOA)
of the emitter signal at its receiver. For the case of the GPS
SVs, the quantities of interest require that computations be
done in three dimensions. However, for the case of the
observers and the emitter, the planar projection of the three
dimensional emitter location error ellipsoid onto the horizontal
surface is the quantity of most significance. This is because
it is assumed that the emitter vertical position is known with

sufficient accuracy.

Using three independent measurements of the emitter signal,
one from each airborne observer, three TOA's are obtained with

the time differences of arrival (TDOA) defined as:
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TDOA;, = TOA ; - TOA, (2-38)
lad ~ ~
TDOA,3 = TOA , - TOA, (2-39)

The measurement Tahi can be written as the sum of the actual

TOA; and the measurement error 5 TOA4

TOA; = TOA; + 5TOAi (2-40)

T

L2

Substituting (2-40) into the form of (2-38)

o ¢

A

TDOA;§ = TOA; - TOAj + STOA; - 8TOAj (2-41)

ALY

Next the individual error terms making up §TOA; are examined
(4:31)

S5TOA; = 8TROP; + SREC; + 8CLCK; + Vj (2-42)

~
t B

Y

where
o
.5 O TROP; = time delay due to errors in tropospheric model
N SREC; = time delay due to uncalibrated receiver delay
g' SCLCK; = observer clock bias error
. vy = measurement corruption noise
;;
», Next, Equation (2-42) is substituted into (2-41) yielding
LA
oy

“ 28
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TDOAij = TOAi - TOAj + SCLCKij + BTROPi - 8TROPj :
+ 8RECi - SREC]- + Vij (2-43) K
ps
LS
a3
where
v
\ i
8CLCK; 4 = 8CLCK; - SCLCK 5
>
b
and f
~)'
Vij = Vi - Vj ] \
1".'?.
e
4,‘
The time difference of arrival in (2-43) is scaled by the speed :;'
iy S
P of light to yield the range difference -
'-' I}
o ~ o _ . . . ;:
- AR(i,j) =AR(i,J) + 8R(i) - 6R.(J) + 8Ryp(i) = SRy (3J) >
. + 8Rp(i) - SRz(3) + v(i,J) (2-44)
- 3
s X
W) where Y
- P
[,
®
[} ~ ~ ~ :.\
» AR(i,J) = c(TOA; - TOAj) o
" AR(i,j) = c(TOA; ~ TOA:) N
“ 1 J N
<
SRc(i) = c 8CLCK; "o
& . '1.’“::
[y SRT(l) = C STROPi o
S
SRp(i) = c SREC; N
> »":-.
v(i,3) = c(vy - vy) o
‘-n
: It should be noted that each vy is modelled as a white Gaussian j§
>N
pu noise of mean zero and, further, that the vi's are independent '.
A
‘ _,
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o
s
‘-
i X
o
‘o
ﬁ of each other such that o
'::
! o
vy = N [0,R] :
7
a and (2-45) RS
Tl
v(i,j) = N [0,2R]
;
; g
where R is the variance of each Vi (4:32). E
}'5 Note that the clock is assumed to be the same for the entire . '
-~ N
emitter location problem. Therefore, the same clock error -~
.E states are shared for the navigation as well as the emitter -
N
. solution. The error terms of SR, Ry, and 5RR are related to Ry
§C the error state vector x(t) by noting that SR, is represented by 55
a cx; of Section 2.2.2, 6Rp is represented by cx;; and SRR is C
\J
represented by cx,, with X0 and x,, described in Section 2.3. E:
\i ﬂ.
» ,.J‘
o ~
As with the GPS measurement development in Section 2.4.1, &;
N
] the next step develops the observation model from the range N
- measurement model. h
o I
N r~
L J
:3 The error state observation is well modelled by o
4 .}
W
2 - A
rd z2(i,3) = AR(i,3) - AR(i,J) (2-46) A
A
%4 where NG
Y A o
B

AR(i,j) = computed or estimated measurement
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Let §E denote the position vector of the emitter expressed in
the ECEF coordinate frame. Next, let ﬁA(i) and gA(j) represent
the position vectors of the i-th and j-th observer aircraft
respectively, again expressed in the ECEF frame. The LOS
vectors from the emitter to the i-th and j-th observer are then
the vectors ﬁAE(i) and ﬁAE(j), respectively. This measurement
geometry is described in two dimensions in Fig. 2.2. It is
noted from the figure that

A ) A A
Ppp(1) = Pp = Pp(1) (2=-47)

AR

A o
So the range difference AR(i,j) is a nonlinear function of :£,
A A oo
Ppp(i) and Bpp(j). Using these computed lines of sight vectors o

B

allows the range difference to be expressed as

AARAAR

v

A ) A _
[Bap (1) | = |Bag(3) |

A A \ N N .
|Pp = Ba(1)| = [Bg = Bp(J) | (2-48)

N
AR(i,3)

]

Ly

"

Note that SA(i) and SA(j) are those estimated quantities which
have been used in Equation (2-25) for deriving the navigation
measurement model. Again, a linearized measurement model is
required so &%(i,j) is expanded in Taylor series to first order

about the actual observer and emitter positions yielding
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A 2ART (i,3) 3ART (1,35)
AR(i,§) =AR(i,}) + ————— 8Pp + 5P (1)
3PE 3P, (1)
aART (1,7)
+ ———— 5P, (3) (2-49)

3P, (1)

Evaluating each of the required partial derivatives using (2-48)
yields
2aRT(1,3) 2

= [ [Bag(i)[ = [Bag(3)1 ] (2=50)
3Pg 3P

Therefore, the partial derivatives of (2-49) are written as

- T . .
3ART(i,3)  Pap(i)  Pag(3)

T . T .
= Upp(i) = Uagp(]) (2-51)
Again, note that the derivatives of the magnitudes of the LOS
vectors conveniently become the unit line of sight vectors; in

this case from the i-th and j-th observers to the emitter.

The third term on the right hand side of (2-49) is evaluated

. T .
3AR(4,3) Ppp (i)
3P, (1) Ry
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= - Upg(i)

Finally, the last term in (2-49)

3AR(i,3)  Pan(3)
BEA(]') Ri
T .
Upg (3) (2-53)

Substituting (2-44) and (2-49), with the partial derivatives

n'«'.'('x'

evaluated, into (2-46) produces

TOLATREVEN

the required error measurement

.
00
X

v s

equation

‘2 ﬁ'

“ e
Ly

= SR (i) - 5Rc(j) + 8Rp(i) = 8Rp(3)

4 Lo s
- '
5{5" o’

SRR (i) - 8RR(J) + v(i,3)

. T T | .

[Upg (i) = Upp(3)] 8B + Upp(i)8Py (i)
T . .
Uag (3)0Ba (3)

This completes the model development for system error

dynamics, including the INS, GPS and emitter location system

errors, as well as the measurement models for navigation and

emitter measurements. In the next chapter the estimator, cost

function, and cost gradient are developed.
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III. ESTIMATOR AND COST FUNCTION DEVELOPMENT

3.1 INTRODUCTION

The models developed in Chapter 2 are the cornerstones upon
which an estimator can be built. The purpose of this estimator
is to provide a time history of the statistical properties of
the error state vector x(t) as it is propagated forward in time
from some initial condition x(t,) = xX,. For this study, a
discrete-time, time-varying estimator is used. Because the

measurement model is nonlinear, an extended Kalman filter was

selected and is described in Section 3.2 of this chapter.

AN
[
RN

In order to develop a cost function for an emitter locating

ar

system, it is necessary to examine the figures of merit

S

available for evaluating the performance of such a system. The

P

most obvious, and most crucial, performance criterion is the

]
1..ﬂ,

accuracy with which the system can estimate the actual emitter

\,‘)‘:l (‘i

location. Although the accuracy of this estimate can be

~. ." v." ]

expressed in any of several ways, the mean squared miss distance

'..fa"'

serves as the basis for cost function development in this study.
The development of the cost function and some of its limitations

are described in Section 3.3. Using the derived cost function,

(NS

the cost gradient is developed in Section 3.4. Finally, the

P ACALY

N
L F YR

minimum cost search technique used in this study is presented in

rLd

Section 3.5.
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3.2 ESTIMATOR DEVELOPMENT

In order to use the Kalman filter as the estimator for this
study, certain assumptions need to be made. These assumptions
are that (1) the state dynamics model and the measurement model
are linear, (2) system dynamic driving noise and measurement
corruption noise processes are well described by Gaussian
processes, and (3) all system noise processes are well modelled
as "white". With these assumptions, the extended Kalman filter

is developed (6).

First, the nonlinear error state dynamics model given by
(2-2) is expanded in Taylor series about the current best

estimate of the error state vector and truncated to first order

terms

£(x,t) = £[R(t),t] + —— | 5x (3-1)

where 8x represents the error state vector. Defining

of(x,t) |
F(t) = ——— | A (3-2)
3X  |x = x(t)
produces the linearized dynamics model
x=F(t) x+Guw (3-3)
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Note that for the first time interval, the nominal point for
expansion is g(to) = 20. Also note that the model is
relinearized about the new estimate each time it is computed.
This allows the nominal trajectory to be updated on a continuing

basis to ensure that deviations from the nominal remain small.

Using the same approach for h(x,t), the nonlinear measurement

vector given by (2-4) is linearized. Define

» '
RY Y-

e

d3h(x,t)
H(t) =

)

|
I
X Ix = x(t)

PR
LR T

oy

resulting in the linearized measurement equation

"’I
Y a e

2'21@ )

z(ty) i . (3-5)

[ g g iR R4
RPN

[
L4

P
s

Forming the equivalent discrete-time system model, Egn (3-3)

S

o "".- ‘.- o

becomes the stochastic difference equation

S

X(ti41) =d(tieq.t5) X(t]) + wa(t;)
where
E [Wg(t{)] =0

E [wg(ty) Wa(ti)] = Qqlti,q,ts)

t
Qq(t, ty) =/;ic:>(t,r) G(r) Q(r) GT(r) &T(t,r) ar




WS
e

r e " '&";
'i'uﬁ,\{\’{

Note that ¢(t,ty) is the state transition matrix such that

Pokd

T XX W

A,

S(toity) = I (3-9)

Blty,ty) = Dty ty) Bty ty) (3-10)

o

‘(I’l:“f.’ff

» The measurement equation (3~5) already models discrete-time

I's
‘: ‘1{‘( Ay

measurements, so it remains unchanged.

I‘::’

;A
fn"-' Tﬂ

Having satisfied the three initial assumptions in this

"I' ﬂ(

section, the Kalman filter equations are stated.

Lo

3 3 3 1 3 . "’l

o The estimate is propagated forward in time using (6): AN
v

A + ti+1 A :
x(tj) + ¢ fix(t/ty),t] dt

i

" A -
* X(t341)

ﬂﬁ F{i

5

’ P(ti41) = S(tiep,ty) P(E]) T (ti41,t5)+0q(ky)  (3-11)

"

L
z‘l'i" L)

S

where e

<
c
hY

+ .
P(t; = 0) = Py (3-12) N
and the measurement update equations are given by (6): =

P(t]) HT(ty) [H(t;) P(t]) HT(t;) + R(t;))17! (3-13) :

A +

X(ti)

X(t7) + K(ty) [z; - H(ty) X(tD)] (3-14)

. P(t]) = P(t]) - K(tj) H(ty) P(t]) (3-15)
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Using the assumptions presented at the beginning of this
section allows the conditional probability density function,
fx/z(f,Z), to be completely described by only the first two
moments. This provides mathematical tractability and allows a
time history of x(t) to be generated, conditioned on all
measurements up through time t, by propagating only the
conditional mean and the covariance. The second moment, the
error covariance matrix P(t), is used for the error covariance

analysis in this study.

x 3.3 COST FUNCTION FORMULATION :'-
; 2
In general, the figure of merit used to evaluate the ig:

performance of an emitter locating system is the accuracy with ’F‘

which the system can estimate the actual emitter location in E;

2 three dimensions. For this study, the problem reduces to an %E
essentially two-dimensional, or planar problem, due to the :;;

) assumption that the vertical emitter position is known E&'
v precisely. Therefore, the quantity of real interest is the fé
- emitter location error ellipse formed by the projection of the :ﬁ:
Y error ellipsoid onto the x-y plane. The error ellipse used in EgE
- this study is the circular error probable (CEP) contour, which yég
' is a contour of equal joint probability density that yields a 'ﬁi
Do, probability of 0.5 when integration of the probability density ZZ'
function is carried out over the area enclosed by the contour. ﬁ;

-~ 'ﬁ%
.

Al
L
]
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s The expression used for the CEP in this study is (4:40)

CEP = 0.5887 (0y + 0y) (3-16)

Note that this expression represents the CEP for an actual

circle where o, and

% Oy the semi-major and semi-minor axes, are
equal. For the more realistic case where the equal probability
density contour is an ellipse with o, # Oy it is found that

(3-16) approximates the true CEP to within three percent as long

as

X
0.15 < — < 1.0 (3-17)

Because of the validity of the approximation given by Egn
(3-16), the cost function may be defined in terms of CEP. Since
the CEP is a function of o, and Oys the error covariance matrix,
P(t), is examined to see how these quantities can be obtained.
First, the two states of interest are the emitter location
1 errors in the horizontal plane, x(83) and x(84). The four

elements of P(t) needed to obtain oy, and oy are given by

| Pp(83,83) P, (83,84) |
Pemit = | | (3-18)
: | Py (84,83) Py (84,84) |
N 40
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: or in simplified notation

| P13 Pio |
enmit = | I (3’19)
I Py Pyo |

Note that the eigenvalues of Pemit are the magnitudes of the
principal axes of the error ellipse and the eigenvectors

| represent the principal axes directions. 1If it is assumed that
the principal axes are rotated only a very small amount from the
coordinate axes, then the cross covariance terms P12 and le are

approximately zero and the diagonal terms are given as
[ Pll = ax and P22 = Uy (3-20)

Now it is possible to define a mean squared miss distance cost

function, J, as

which is related to the root mean square (RMS) miss distance by
RMs = J1/2 (3-22)

, An alternate method is to define the cost function in terms of

the CEP such that J.pp is given by

41

P ) o * ‘ . LI y .~ N B YL I S TR S Rl S S TP N ot
\*w{w ro- “n -\ ‘\ YA IR N TE D S T S T T e L ',-J.\,. SRR o . .
. i i . - -

o

N NN

AL

TN AN N
DTN WENEAT

s s = _u_a
[
l\“ ? . L
LY ® > .

2

CALs

‘.

]
[

N ¥
a
-

.-.'*. 1"lt,l,l_'.
.‘.f‘.. RN
PR

" s e 5 .
“AS

14

NN
‘s % o

o
‘l F]

P
€ f

o™



I

=3 R

G 58 53

LT

o

bRl

-
Pl

e
S

¥

s

Zan

DR Y

2"s’r

il

g
AW

N
N

Ny

JCEP(ES) =0, + ay (3=-23) :;

W

which is directly related to CEP by o~
2

.

* -

o)

CEP = 0.5887 Jrpp(Rg) (3-24)

As pointed out by Lewantowicz (4), the cost gradient for mean ZE
squared miss distance computation g(Pg), is easier than the 1%
computation for the CEP cost gradient, depp(Bg) . For this “
0

reason, J(Bg) given by (3-21), the mean squared miss distance {:
'’

cost, is the cost function which is actually minimized in this 3:
study. The results are presented in terms of both CEP and RMS \}f
miss distance. :{
]

Note that the error covariance matrix, g(ti), is iterated K
from the initial conditions to steady-state values at each step 3f
of the cost search. This prevents the accumulation of past SV i
o . . . . ®
position related information in the cross-covariance terms of '~
~

‘.

the P matrix as the satellite geometry changes. -
“w

"I

o~

Using the cost function described by (3-21), the cost Q’
gradient is developed. 0
-‘:.-

¥

3.4 COST GRADIENT FORMULATION o
s
g

To accomplish the MSMD cost gradient computation it is ;:
convenient to express (3-21) in compact matrix notation where ;’
42 *
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J(Bg) =tr [ E Py ]

Py (83,83) + Py (84,84) (3-25)

where

E is a square 91 x 91 matrix of all zeros, except for 1l's
in the 83rd and 84th diagonal positions.

and

Py is the error covariance matrix at time t

From (3-25) and (3-11), it can be seen that the cost J is a
function of the vector Pg described in Section 2.4.1. This Py
starts out as a 12 dimensional vector describing the three-
dimensional position of each of 4 satellites in the ECEF frame.
Note that the vector Pg is constrained by the fixed orbital
radius of the GPS satellites. For the j-th satellite, the

vector is constrained such that (4:68)

Xy = (RS - y§ - z§ )1/2 (3-26)
The geometry chosen is such that the x-axis of the ECEF frame
passes through the "center" of the observer geometry, where the
center is defined as a point equidistant from the endpoints of a
line segment connecting observer 1 and observer 3. The y-z
plane forms the two-dimensional space onto which the SV and
observer positions are projected. Note that for projection

purposes, the center of the observer geometry is located along
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the x-axis at an altitude h above the surface of the earth.
Incorporating the effect of this constraint yields an eight

dimensional parameter vector Pg.

BS = [ Yir 23+ Y21 23+ Y31 23, Yy 24 ] (3-27)

For each SV, this two-dimensional space is further
constrained by the initial assumption that satellites used must
lie at or above five degrees elevation from the local horizon
measured from the intersection of the y-z axes. The result of
this constraint maps all allowable satellite positions into a

circle of radius R, centered at the origin of the y-z coordinate

system.

Fig. 3.1 depicts a triangle with angles A, B, and C with sides

opposite these angles given by a, b, and ¢ respectively. From

this figure it can be seen that

| Re | = Rg cos (3-28)
Referring to Fig. 3.1, find the angle C using the law of sines

Rs Re+h
= (3-29)
sin B sin C

where B = 95°,

solving for the angle C yields:
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(Rg+th) sin 95°
C = arcsin (3-30)
RS
N Now find B
B=290° -2 (3-31)
where
0 A = 180° - (B + C) (3-32)
‘l
Substituting Ry = 8.4116 x 10’ into Eqn (3-28) yields
PN
|IRc! = 7.934 x 107 feet (3-32)

. This figure is now used to determine when projected satellite
positions violate the LOS elevation constraint. 1If the

“

E: satellite position projection violates this constraint, then it

is reset onto the constraint boundary.

Fl The actual cost gradient, g(Bg) is developed in Appendix
.

A. This cost gradient is now incorporated into a minimum cost

1

4 search as described in the next section. C?
N
N

v N
RS

b 3.5 MINIMUM COST SEARCH TECHNIQUE -

£

N.

The search technique selected for minimizing the cost

b function in this study is a steepest descent algorithm. The

N
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search scheme is based on the premise that the computed gradient
g(Bg) indicates the direction of maximum rate of increase in the
cost for a given Pg. Therefore, the negative gradient direction
must represent the direction of maximum rate of decrease in the
cost. It is possible to proceed along the negative gradient
direction until a minimum cost along this gradient is
determined. At this point a new gradient direction is computed
and search proceeds along the new negative gradient direction.
The search continues until the gradient vector computed has a
magnitude smaller than a preset threshold. The initial step
size for the search is chosen by trial and error. It is
important to consider the trade-offs between the number of

intermediate points required to reach the minimum along a

gradient direction and the possibility of grossly overshooting

that minimum when determining the initial step size.

The minimum cost function point along a given gradient
search direction 90 is found by monitoring the angle conditicn
between 90 and g3 using the cosine of the angle between the two
vectors. This cosine is computed by using the definition of the

inner product (or vector projection)

9o + 9i> = | 9o | |Ei | cos @

where 6 is the angle between the two vectors.
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8 Solving for cos 6 o
P\h

< gi> o

2o ¢ Zi

cos 6 = (3-35) 2
9o | | g5 | R

s - l(\
e

[\ o8
. The minimum cost point along g, occurs where g; is orthogonal to by
it - - -,\
’ gor i.e. where cosf = 0. When this orthogonality condition is -'.j-\l
- ‘e ™

" 1.’5
[ met, the g; becomes the new g, and Pg; becomes Pg, as shown in \fr
Fig. 3.2. :._
! . ":;\-
The vector Pg; is computed as Al

-.:s

p ¥
Pgj = Bgo * S5 9o (3-36) o
. NS,
- where RS
S§ = (1 +0.9cosfji_y) Sj_4 (3=-37) -';

::';\.' \

Note that S, is the initial step size selected and that the ::'}_

v .-:\-
’ algorithm automatically reduces the step size as the 9or 94 ::r:.
orthogonality condition is approached. . ‘-'

7
‘ o
Y This search algorithm is modified due to the fact that the :;;.
satellites may move in either an unconstrained or constrained -

! \.":\
: mariner. Constrained movement is required when the gradient o
N

search direction indicates the satellite should be moved onto or '{'::
NN
beyond the R, boundary. 1In this study, the constrained and =3

AN

unconstrained satellite movements are computed independently R

TN

. using separate initial step size parameters. Now, go is given '_:E.‘_
by >

.:.:.’

o=

.
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9o = [9olcon * [9oluncon (3-38)

Whenever a satellite reaches the R, boundary, g, is redefined
and the search begins along the new gradient search direction.
The (doluNcoON is simply redefined using gj for the satellites
that have not reached the boundary and, similarly, Pg; becomes
Pgo- The [gy)lcon is actually the projection of gj, for the
satellites on the boundary, onto a vector tangent to the
boundary circle at Pg;j. This projection is done so that, in
approximation, gradient search is done along the circular
boundary as indicated in Fig. 3.3. 1If, during gradient search
along the boundary, 93 indicates satellite movement should be
off the boundary, then g, is again reset such that the

appropriate satellite may move off the boundary constraint.

To find [9o)con first define the normal vector at Pg; for

the j-th satellite

n = [y, 2j] (3-39)

The tangent vector at Pg; is then

t = (25 , -yj] (3-40)

which is normalized to form the unit tangent vector
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Uy = [qu ' uyj]

The projection angle ¢ is given by

<9ij

r Be>

cos ¢ =
| 915 |

The projection magnitude is computed as

Finally, g, for the constrained satellite is given as

| [9olcon |

[dolcon =

| i | cos ¢

| [9olcon | Ut

(3-41)

(3-42)

(3-43)

(3-44)

The termination condition for search in the case of constrained

satellites can obviously no longer be based on
the computed gradient vector being small.

termination conditicn in this case is when the

vector is orthogonal to the tangent vector or,

The appropriate

the magnitude of

computed gradient

in other words,

when the projection of the gradient vector opto the tangent is

very nearly zero.

Having developed the basic mechanisms for estimation, cost

function computation, and minimum cost search, the analysis is

accomplished.

The next chapter reports the results.

52

22

~. 5 9
i A PLLs

5.
e

AL

¥ .

e |
“:’-'ﬁf(.‘ff_. A

"l .l.xl.‘.d-'

wh G

DA s
{ l‘ ly ‘l. . ’ { l. l'

L]

N



=
»

i - T Yo Aby Rig @Y Y Iirv N & g0
Vg tal Vil Beb Yah A \‘."“‘.".'...,‘“4nunsuu-y. . N WAt a'a AV, » »

AT
AL,

IV. RESULTS
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4.1 INTRODUCTION

FFJ:
"5
L L

In this study, the work accomplished by Lewantowicz in his

x4

December 1985 Master of Science thesis (4) is expanded and used

?3#»

.'f

. as a starting point for further research. 1In particular, the

220
P

effect of iterating the error covariance matrix to steady state "'.

':'.'p after each satellite repositioning movement is examined. This -
~? -~
chapter examines the optimum positions of GPS satellits for the ';-

™, .

™ four, three, and two satellite cases such that minimum errors in .
. the estimate of emitter location are made. The results of the R
A e
A . s -
,. four and three satellite cases are compared directly with the <

i results obtained by Lewantowicz. In addition, the validity of :.

using a fourth satellite directly overhead to simulate a three -]

N "..
,'.; satellite case where each observer has a precise clock is -
o

examined. The performance of the emitter location system is ;

g evaluated for each optimum satellite configuration and the :::
“

'

o results are compared. -
z i
" .
o

:z Using the satellite geometry relations to the cost data f
\.’ \:(
obtained in all the optimization runs, the basic guidelines are f:."-.

e o
::; developed for a satellite selection algorithm formulation. The .
<

- factors considered in forming the algorithm, as well as ;
= ;

v justifying data, are presented in section 4.5. :*
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4.2 FOUR SATELLITE OPTIMIZATION

The four satellite position optimization problem begins
with the SVs and observers in the initial configuration shown in
Fig. 4.1. These positions were selected to correspond with
those used by Lewantowicz so that a direct comparison can be
made. Note not only the initial geometry of the problem, but
also the characteristics of each of the error ellipses. Each
observer error ellipse has a particular size and orientation,
and the emitter error ellipse has important characteristics of
size and elongation, which are ultimately reflected in the CEP.
It should be pointed out that the elongation of the emitter
error ellipse, in general, is not taken into account if the
chosen satellite geometry only minimizes the observer navigation
problem. For many practical applications, the orientation and
elongation of the emitter error ellipse is of critical
importarice, especially in the case of highly elongated ellipses.
The initial satellite position data is given in Table 4.1 and
initial error ellipse parameters are presented in Table 4.2.

From this starting point, the goal is to accomplish a
gradient search which will move the satellites to an orientation
yielding minimum emitter MSMD (and CEP). However, before each
of the gradient computations is performed, it is desirable to

iterate the error covariance matrix to steady-state at a

constant SV position to examine the Kalman filter convergence
time history.
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Table 4.1. Four Satellite Initial Positions
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Azimuth (2) Elevation (9)
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Table 4.2. Four Satellite Initial Error Ellipse Parameters
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Although many methods exist to determine the number of 53&
iterations required to reach steady-state operation, this study i."
examined the relationship between the number of iterations of 5&{
the error covariance matrix and the parameters describing the ?Q:‘
emitter error ellipse. 1In particular, the change in magnitude ';
of CEP, ACEP, from iteration i to i+l is computed and the %: :
minimum value is sought as a function of i. 1In addition, the %E;
convergence angle, which is the angle between the gradient . @
vector computed at iteration i and the gradient vector at ;ii
iteration i+l1, is monitored to determine when the computed §§¥
gradient vectors become coaligned. The ACEP for 200 Kalman .
i

filter iterations of the error covariance matrix propagation and &Eﬁ
update is presented in Fig. 4.2. Note the rapid drop in CEP féz
improvement as the iterations increase, with a local minimum .iL;
occuring at eight iterations. This minimum is clearly shown on EEE
the expanded iteration scale in Fig. 4.3. The behavior of ACEP ﬁgz
after iteration eight is presented on an expanded ACEP scale in Ft;
Fig. 4.4. Note the transient dynamic behavior of the matrix Egsi
Ricatti equation solution as reflected by this CEP measure in E?i
Fig. 4.4, and the second local minimum at approximately 35 '1t;
iterations. From the data presented, the obvious choice for the ,EE
number of iterations of the error covariance matrix to use for :Qii
steady state would be one of the two local minima. Due to the .éf;
computational loading required to propagate and update the error ;EE
covariance matrix at each cost function search point, and the Eg?f
magnitude of improvement expected with increased iterations, the ﬁf%
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local minimum of eight iterations was selected to approximate o
T

steady-state operation for this study. Gradient vector .

$

'.\."-

convergence at 8 iterations is good, with a convergence angle of oy
70

e

less than 0.6 degrees. With eight iterations established as the wa
:..& -
number of iterations prior to each gradient vector computation, _—
LINSIaE

..\_.'_'_h
the minimum cost search for the four satellite case is itfﬁ.
s
conducted. Note that the eight iteration figure was obtained A
A
with the satellites and observers only at their initial , .9
I‘:'J'\J'

positions. Therefore, this figure may or may not be appropriate jif?
.-_:.r_\'.
for all possible scenarios. LYy
J{‘ -I*:' A
. o

-_.\

=

The satellite positions determined by the minimum cost

DN
. v
o N _\ Jr,
‘.
.
Nt
l, 4

search are presented graphically in Fig. 4.5, with position data

e
N

and error ellipse parameters given in Tables 4.3 and 4.4,
respectively. The paths the satellites "traveled" during the
gradient search in reaching their final positions are shown in
Fig. 4.6. The minimum emitter CEP found is 41.22 feet, down
from the initial CEP of 58.0 feet. Comparing Tables 4.2 and
4.4, it can be seen that the observer horizontal navigation
errors have been significantly reduced. This reduction results
from a marked decrease in LOS bias errors as indicated in Table

4.3. The reduction in these east-west observer navigation

errors directly affect the shape and orientation of the emitter

atL .

S

ellipse. In fact, these reductions are the driving force behind

LA
g A,

the reduction in the semi-major axis of the emitter ellipse and,

PR

»
’
s

ultimately, the emitter CEP. Note that three of the four

S
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Table 4.3. Four Satellite Final Positions

T

Azimuth (°) Elevation (°2) LOS Bias (ft)
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x
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Table 4.4. Four Satellite Final Error Ellipse Parameters
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satellites tended to align themselves along the east-west axis
in opposition to each other. This alignment produced the noted
reductions in the east-west emitter location error, and reflects
the type of optimum geometry expected at the outset of this
study. The fact that the semi-major axis of the emitter error
ellipse lies along the east-west axis is a function of the

observer geometry.

Comparing the results of the four satellite optimization
with those obtained by Lewantowicz (4) indicates that the
satellite positions are within 10° of each other in azimuth and
elevation and the minimum emitter CEPs are within two feet of

one another. This supports the Lewantowicz hypothesis described

in Section 1.5. Next, the three satellite optimization is

performed.

4.3 THREE SATELLITE OPTIMIZATION

As pointed out in Section 3.3, the cost function used in
this study was formulated for an essentially two-dimensional
problem. This means that the problem is uniquely solved with
only three satellites and the fourth satellite only provides
additional horizontal emitter position information. The
performance of the emitter locating system is evaluated for two
separate three satellite cases; first, one satellite is fixed

overhead and three satellites are allowed to move (see Section
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1.5) and, second, the measurements from only three satellites

e,

are incorporated into the error covariance computation.

PR A AR
L
A A

The "pseudo" three satellite case, as proposed by

v
1A " "

Lewantowicz (4) uses four satellites with one fixed directly
overhead and is intended to simulate the three satellite case
when each observer has a precise clock. The results of the

pseudo-three satellite optimization are presented in Fig. 4.7

-'II-'

and Tables 4.5 and 4.6. The paths the satellites "traveled" in

Sy

s
Folls

reaching their final positions are shown in Fig. 4.8. Note the

i

final CEP achieved in the pseudo-three satellite case is 40.71

Wy
PALACT

feet compared to 41.22 feet obtained in the four satellite case.

s
v

These results seem unreasonable since they indicate that the CEP

'v’ v f.

improved when less position information was available. What has
happened is that a three satellite optimization has not been
performed, but, rather, a constrained four satellite case has
been optimized. The gradient search performed for the
constrained satellite case found a different local minimum than
that found in the original four satellite case. The existence
of this second local minimum indicates that finding a global
minimum using the gradient search algorithm of this study is
highly unlikely. However, the magnitude of the second local
minimum varies only slightly from the first minimum, indicating
that it is reasonable to expect other local minima to result in
nearly the same costs. Note that satellites 1 and 2 in the

pseudo-three satellite case have assumed approximately the same
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Table 4.6
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e 4.5. Pseudo Three Satellite Final Positions

Azimuth (°) Elevation (9)
277.4 16.7

272.3 17.1

—_———

47.7 5.0

LOS Bias (ft)

Pseudo Three Satellite Error Ellipse Parameters

Angle from
-88.0
-87.7

65.1

- 0.01

<

40.71
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positions that they did in the four satellite case, adding

credence to the idea of a constrained four satellite case.

The fact that the pseudo-three satellite optimization
yields better results than the four satellite case indicates
that the simulation of a three satellite case using four
satellites, with one satellite fixed overhead, is not
appropriate. This is further verified by the following true

three satellite optimization.

For the true three satellite case, the measurements from
only three satellites are incorporated in the error covariance
matrix. The three satellite optimization results are given in
Fig. 4.9 and Tables 4.7 and 4.8. Again, satellite tracks are

indicated in Fig. 4.10.

The results in Table 4.8 are reasonable for the three
satellite case, with the CEP of 43.01 feet slightly higher than
the CEP of 41.22 feet obtained in the four satellite analysis,
as expected. This is because the problem is essentially planar
and three satellites are sufficient to determine position and
user clock bias states. The barometric altimeter still
stabilizes the INS vertical channel, but the large vertical
position errors do not affect the planar emitter location
problem. Note that the optimum satellite positions in the true

three satellite case are considerably different from those
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Table 4.7. Three Satellite Final Positions

| Azimuth (2) Elevation (8) LOS Bias (ft)
sv-1 : 299.6 22.4 3.1
sv-2 : 244.6 11.8 4.5
sv-3 : 105.9 9.3 3.7

Table 4.8. Three Satellite Error Ellipse Parameters

Axis 1 (ft) Axis 2 Angle from Y (9)

(@]
1
g

(£t)
Obs-1 6.00 3.57 62.8 .64

N Cd
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obtained in the pseudo-three satellite optimization. The true };:.

2

ALy

three satellite optimization yields satellite positions which
]
correspond to those anticipated at the outset of this study. AN
SV-1 and SV-3 have assumed positions such that they reduce Qﬁf
- 'r‘
observer position errors primarily in the east-west direction

and have also essentially aligned themselves so that LOS bias 3ﬁ;
A
errors are reduced. This can be seen in Table 4.7 where SV-1 ﬁﬁ:
oy
and SV-3 have the smaller LOS bias terms. SV-2 has taken up a )
v"\_-’"

PN

position which is nearly symmetric with SV-1 about the east-west ?Ei
Va ._'v'
axis. ﬁ:ﬁ.
--.:\-” g
[ )
BRG
4.4 TWO SATELLITE OPTIMIZATION :: '_:.-'
S

o
Again, as in the three satellite optimization, only ;i ®

S,

measurements from the appropriate number of satellites are used if:
in computing the error covariance matrix updates. This presents iﬁ:
-
a problem in the two satellite case since, in general, three SVs ()
AT

are required to solve for a two-dimensional position and user oy
et d

clock bias. For the two satellite case in this study, the :ﬁyﬁ
N
navigation filter is iterated to steady-state using measurements ™
from four available SVs before operation is degraded to two o

satellites. This allows the Kalman filter to converge on

accurate estimates of user clock bias and user clock drift

states before degraded operation begins. Using these state ‘.
(.,-.
estimates makes it possible to propagate the user clock bias :ii’
RS
forward with sufficient accuracy for some period of time. e
R
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The gradient search scheme converges on the optimum é&éf
satellite configuration more quickly for the two satellite case - o
than in the searches with more SVs. This is due in part to the iag
fact that both satellites move onto the five degree constraint gﬁE‘
boundary and remain there. The optimization results are _ j
presented in Fig. 4.11 and Tables 4.9 and 4.10. Satellite paths gﬁ::
to the optimum positions are shown in Fig. 4.12. Ezzﬁ
Note that for the two satellite case, SV-2 has again ?i—
aligned itself along the east-west axis to provide maximum a;
information along the long axis of the emitter error ellipse. éié:
Additionally, SV-1 has assumed a position that provides s
essentially the same amount of information in the y and z
directions. The increase of approximately 13 to 15 feet in -
emitter CEP over the previous cases is reasonable since the ::’
system is depending upon filter estimates for user clock bias. g&;h
It is significant to note, however, that the system is able to ?E;
achieve good performance for some period of time, even when only f:;
two satellites are available for measurements. E:
The satellite geometry data obtained in the previous fka
optimization cases is now used to develop a satellite selection ;i;
algorithm that will minimize emitter CEP. ﬁj&
53
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Table 4.9. Two Satellite Final Positions

| Azimuth (2) Elevation (2) 0S Bias (ft)
|

| 143.9 5.0 1.80

l
|

268.8 5.0 l.82

Table 4.10. Two Satellite Error Ellipse Parameters

1 Axis 1 (ft) Axis 2 Angle from Y (2) CEP (ft)
Obs~-1 ‘ 13.53 2.96 66.6 9.70
Obs-2 : 12.83 2.98 60.7 9.30
Obs-3 I 14.92 2.97 60.6 10.54
Emit : 82.95 12.66 0.89 56.28
77
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X 4.5 SATELLITE SELECTION ALGORITHM I
Y

' :-":',
When developing a satellite selection algorithm, there is a ;2:
T tradeoff between making the selection criteria restrictive EEE
enough to provide acceptable emitter CEPs and liberal enough to X
allow a wide range of possible satellite solution geometries. :':‘.

Y The basic approach used in this study is to examine the \5
sensitivity of the emitter CEP to variations in satellite f
position from the optimum. ‘;

v
o
’ The previous optimization results indicate that the primary ':. '
satellite(s) should be aligned along the semi-major axis of the ;;
: emitter error ellipse. In addition, if more than two satellites .if;
are available, the primary satellites tend to lie along “t
i essentially the same LOS. Comparison of the different EE
3 optimization results is useful to show trends in solution :2
geometry. These trends are very useful in developing selection :
v criteria. The final satellite positions for the four satellite E:E
optimization in Fig. 4.5 show SV-1 and SV-2 very close to E':':
alignment with the semi-major axis of the emitter error ellipse N:F.
' and along the same LOS as SV-3. Note that SV-4 is positioned to ‘
provide information primarily along the direction of the semi- ‘

% minor axis of the emitter error ellipse. Comparing these ":
‘ positions with the pseudo-three satellite case of Fig. 4.7, :E
: where SV-4 provides no horizontal position information, f’
indicates that SV-1 and SV-2 assumed approximately the same '{\.

' o~
' e
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positions, while SV-3 moved to a position that provides more

information along the semi-major axis to compensate for the loss

o
'y o
of information from SV-4. 1In fact, SV-3 provides equal e
Ry,
) O
f information in each axis direction of the emitter error ellipse. P
-
- . N o . Ry
The three satellite case in Fig. 4.9 indicates SV-3 is the o
N,
b primary satellite, while SV-1 and SV-2 have taken up positions Rty
C:
providing information primarily along the semi-major axis, but )
s
NS
\ also some information along the semi-minor axis. It is the -ﬁ:
tradeoff between this semi-major and semi-minor axis information ,ﬁw
S o
that is instrumental in algorithm development. In the two
N
LA
- satellite case, SV-2 is the primary satellite and SV-1 moves to H{'
‘ N
< . . . . e
’ the equal information position as shown in Fig. 4.10. These 53
N
8] s."
-~ comparisons, then, form the basis for selection criteria. '
t i;.:
;I'C;I
2 Selection criteria are summarized as follows: i:;
-'\J‘
@
, 4
l. Primary satellite(s) should lie along the semi-major -
-
. axis direction of the emitter error ellipse at an elevation RS
] ."\'
of 10-25°. ®
f 2. Primary satellites should lie along the same LOS to Y
LA
reduce LOS bias errors. N
y .
N
: 3. Additional satellites should be selected to provide N
S
\ adequate information in the general semi-minor axis 'ﬁ:
' direction. _;*
. A
o
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Satellites are selected which meet the criteria or come
closest to satisfying them. Optimization results indicate that
as the primary satellite(s) move closer to the semi-major axis
direction, the additional satellite(s) move toward the equal
information position. The three satellite case illustrates the
situation where all the satellites are equally dominant, i.e.
all are at approximately the same angle with respect to the
semi-major axis of the emitter error ellipse. The selection
algorithm must be implemented in such a way that, as less
information is available along the semi-major axis direction,
additional satellites are selected to provide information

primarily along that direction.

The amount of change in emitter CEP as the satellites
deviate from the optimum positions is addressed somewhat in this
study, though not specifically. Gradient search data indicates
that large changes in satellite azimuth can be made with
relatively little effect on the CEP. This is encouraging
because it opens a wider window for satellite selection, while
maintaining a reasonable CEP. Data regarding CEP change versus
satellite elevation is not so readily ava.ilable, but changes in
elevation in the range of interest (up to 15°) should not result

in significant increases in CEP.
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V. CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

This study shows that emitter location errors can be
significantly reduced by selecting satellites according to the
selection criteria presented in Chapter 4, rather than by
minimum GDOP criteria. Three satellite performance is nearly as
good as that obtained using four satellites, since only three
satellites are necessary to determine the emitter horizontal
position and user clock bias. When operation is further
degraded to the two satellite case, emitter location is still
slightly better than that obtained using four satellites

selected to minimize GDOP.

Although the global minimum of the CEP cost function was
not found, the local minima obtained for all of the fully
determined cases agreed very closely. This indicates that
little improvement in CEP can be expected beyond what is

achieved in this study.

Iterating the error covariance matrix to steady-state after
each satellite movement does not have a significant effect on
either the final optimized satellite positions or on the minimum
CEP obtained. This verifies the hypothesis by Lewantowicz (4)

that using only a single iteration of the navigation Kalman
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filter between satellite movements without reinitializing, does
not significantly affect the results. Modifications to the
gradient search routine did, however, result in more uniform,
well-behaved "tracks" for the satellites as they moved to their

optimum positions.

5.2 RECOMMENDATIONS

Since the weighted gradient search routine used in this
study is highly unlikely to converge to the global minimum,
another approach should be used that has a higher probability of
finding the global minimum. It may be necessary to compute the
cost at a very large number of random points in the eight-
dimensional P, space to identify candidate regions in which to

perform gradient searches for the global minimum.

The computational loading required to perform the weighted
gradient search to the local minimum is enormous. This is due
in part to the nature of the gradient search, in that it tends
to converge at a rapid rate initially, but converges very slowly
as it nears the minimum. The possilility of searching initially
using the weighted gradient method, since it guarantees that at
least a local minimum will be found, and then switching to a
more rapidly converging algorithm, such as the Newton-Raphson

method, as the minimum cost is approached, should be explored.
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The selection criteria established in Chapter 4 should be
used to select satellites from a real-world constellation of

available satellites. The emitter CEP obtained using these

L7
P o]

+
X

"optimum"” satellites could then be compared to the CEP obtained

using satellites selected using minimum GDOP criteria. This

[
v v

would provide a "real-world" performance evaluation of the

oy

emitter location system proposed in this study.
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ol Appendix A: Cost Gradient Function Derivation N
N
The following appendix is taken in its entirety from the
"
" . .
: thesis by Lewantowicz (4:104-107).
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APPENDIX B

COST GRADIENT FUNCTION DERIVATION

The cost function derived in Section 2.6 is
J = tr [EP*] (B-1)

where E is an n x n constant matrix consisting of zeros except for the
two diagor ’.elements, corresponding to the two states that represent the
horizontal emitter position errors, which are = 1.0. The matrix P* is
the n x n symmetric error covariance matrix at time k. However, at a
fixed &, P* is a function of only the variables with respect to which

the cost J will be minimized.

The positions of GPS satellites or the positions of observers, or
both, could be the variables of J. In fact, Chapter 4 covers
optimization with respect to GPS positions, and Chapter 5 covers
optimization with respect to both GPS and observer positions. Define the
vector Pg as the vector of those position variables. Then the cost J

is a scalar functlion of Pg.

J = J {r*}
= J {p*{u]l
J {p*[

H
H(P )1 (B-2)

+
=

where H i3 an m x n measurement sensitivity matrix and Pg 18 an

dimensioned vector.

In finding the minimum of a function, the ~oot &0

in several minimum cost search algoritnma.
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g 3P (B-3)
-3
Using the chain rule of partial derivatives
T . 9J dH (B-4)

H P
-s

where the first term is an m x n matrix and the second term is m x n x 2

third order tensor.
The first partial derivative term of Equation (B-4) is derived.

J = tr [EP*]

- tr [EGH'R'H + P‘-')“] (B-5)

Then the variation i{n J is
§6J = tr [EsP*] (B-6)

where § is the variation symbol

-1 =1

R-' 6H)(HTR™* H + P~ )

-1 -1

sp* = - (HTR-'H + P~ ) (6HTR™'H + H'

T

« - P*(6HT R™' H + HT R™' 6H)P* (B-7)

Therefore, Equation (B-6) becomes

50 = tr [~EP*(SHTR™! H + H'R™' GH)P*] (B-8)
however, tr (AB] = tr [BA]
6 = tr[-P*EP*(SHTR™! H + HIR™' &H)) (8-9)
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however, tr[A] = tr [AT]

. Thus the variation in cost J, with respect to the measurement sensitivity !
: matrix H, becomes o

T

§J = tr[-P*EP*(H'R'6H + HTR"'6H) ]

Ta-144] (B-10) ﬂh.

= -2 tr[P*EP*H
Using the result attributed to Kleinman, D.L. in [10]; given -

£x) = te[MOO] (B-11) g

where f i{s a scalar function of the matrix X, and M(X) i{s a matrix valued qi
¢ function of the matrix X then in &

£(X + €8X) - £(X) = etr[M(X)aX] (B-12) 3a

as € > 0. The derivative of a scalar function f with respect to the q

v matrix valued variable X is oM

4 af(X)
X

- M) (B-13) ;

P

Thus the variation Equation (B-8), expressed as a partial derivative :
'

.h

! becomes e

¢. BT
' %% - - 2[prerru ] T -

2 = = 2R™'HP*EP* (B-14) POV

! where 3J/3H is an m x n matrix. N,

A.3 R
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Next, the dH/3P4 is simply an element by element partial
derivative of H with respect to each element of the vector Pgq. For
Pg of dimension £, there are £ m x n matrices, the third-order tensor,
of partial derivatives. Thus each component of the cost gradient vector

is computed according to

T _ 3 3H
g 3H P
-s
m n
3J 3H
- I 1 55 D (B-15)
i=1 =1 -3

where 3J/9H is computed as shown in (B-14). Computation of 3H/3Pgq(k)

matrices is presented in Appendices C and D for GPS only and for GPS with

observer optimizations respectively.
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The use of the Global Positioning System (GPS) as a
navigation aid for aircraft attempting to locate a ground
based electromagnetic energy emitter is studied. In particular,
the satellite geometry which yields minimum errors in the
emitter location estimation for four different satellite
availability cases is explored. This geometry, in general,
is not the same as that which yields minimum aircraft navigation
crrors. Satellite selection criteria are identified and
serve as a basis for selection algorithm development.

The research shows that emitter location errors can be
significantly reduced by selecting satellites based on the
criteria presented in this study. Three satellite performance
is found to be nearly as good as that obtained using four
satellites and, for the two satellite case, emitter location
is still better for some period of time than that obtained
using four satellites selected to minimize Geometric Dilution
of Precision (GDOP).
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